3.402 \(\int \frac{\sqrt{a+a \sec (c+d x)}}{\sqrt{\cos (c+d x)}} \, dx\)

Optimal. Leaf size=57 \[ \frac{2 \sqrt{a} \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \sinh ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{d} \]

[Out]

(2*Sqrt[a]*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/d

________________________________________________________________________________________

Rubi [A]  time = 0.116187, antiderivative size = 57, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.12, Rules used = {4264, 3801, 215} \[ \frac{2 \sqrt{a} \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \sinh ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + a*Sec[c + d*x]]/Sqrt[Cos[c + d*x]],x]

[Out]

(2*Sqrt[a]*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/d

Rule 4264

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rule 3801

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*a*Sq
rt[(a*d)/b])/(b*f), Subst[Int[1/Sqrt[1 + x^2/a], x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x]]], x] /; Free
Q[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[(a*d)/b, 0]

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rubi steps

\begin{align*} \int \frac{\sqrt{a+a \sec (c+d x)}}{\sqrt{\cos (c+d x)}} \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\sec (c+d x)} \sqrt{a+a \sec (c+d x)} \, dx\\ &=-\frac{\left (2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1+\frac{x^2}{a}}} \, dx,x,-\frac{a \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{d}\\ &=\frac{2 \sqrt{a} \sinh ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}}{d}\\ \end{align*}

Mathematica [A]  time = 0.16116, size = 74, normalized size = 1.3 \[ -\frac{2 \sqrt{\cos (c+d x)} \tan \left (\frac{1}{2} (c+d x)\right ) \sqrt{\sec (c+d x)} \sqrt{a (\sec (c+d x)+1)} \sin ^{-1}\left (\sqrt{\sec (c+d x)}\right )}{d \sqrt{1-\sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + a*Sec[c + d*x]]/Sqrt[Cos[c + d*x]],x]

[Out]

(-2*ArcSin[Sqrt[Sec[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])]*Tan[(c + d*x)/
2])/(d*Sqrt[1 - Sec[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 0.201, size = 139, normalized size = 2.4 \begin{align*}{\frac{\sqrt{2} \left ( -1+\cos \left ( dx+c \right ) \right ) }{d \left ( \sin \left ( dx+c \right ) \right ) ^{2}}\sqrt{{\frac{a \left ( \cos \left ( dx+c \right ) +1 \right ) }{\cos \left ( dx+c \right ) }}}\sqrt{\cos \left ( dx+c \right ) } \left ( \arctan \left ({\frac{\sqrt{2} \left ( \cos \left ( dx+c \right ) +1-\sin \left ( dx+c \right ) \right ) }{4}\sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}} \right ) -\arctan \left ({\frac{\sqrt{2} \left ( \cos \left ( dx+c \right ) +1+\sin \left ( dx+c \right ) \right ) }{4}\sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}} \right ) \right ){\frac{1}{\sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x)

[Out]

1/d*2^(1/2)*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)*cos(d*x+c)^(1/2)*(-1+cos(d*x+c))*(arctan(1/4*2^(1/2)*(-2/(cos(
d*x+c)+1))^(1/2)*(cos(d*x+c)+1-sin(d*x+c)))-arctan(1/4*2^(1/2)*(-2/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)+1+sin(d*x
+c))))/sin(d*x+c)^2/(-2/(cos(d*x+c)+1))^(1/2)

________________________________________________________________________________________

Maxima [B]  time = 2.7798, size = 325, normalized size = 5.7 \begin{align*} \frac{\sqrt{a}{\left (\log \left (2 \, \cos \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 2 \, \sqrt{2} \cos \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 2 \, \sqrt{2} \sin \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 2\right ) - \log \left (2 \, \cos \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 2 \, \sqrt{2} \cos \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 2 \, \sqrt{2} \sin \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 2\right ) + \log \left (2 \, \cos \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 2 \, \sqrt{2} \cos \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 2 \, \sqrt{2} \sin \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 2\right ) - \log \left (2 \, \cos \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 2 \, \sqrt{2} \cos \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 2 \, \sqrt{2} \sin \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 2\right )\right )}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

1/2*sqrt(a)*(log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt
(2)*sin(1/2*d*x + 1/2*c) + 2) - log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*
x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2
*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2
*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))/d

________________________________________________________________________________________

Fricas [A]  time = 1.7912, size = 475, normalized size = 8.33 \begin{align*} \left [\frac{\sqrt{a} \log \left (\frac{a \cos \left (d x + c\right )^{3} - 4 \, \sqrt{a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}{\left (\cos \left (d x + c\right ) - 2\right )} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 7 \, a \cos \left (d x + c\right )^{2} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right )}{2 \, d}, \frac{\sqrt{-a} \arctan \left (\frac{2 \, \sqrt{-a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right )}{d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

[1/2*sqrt(a)*log((a*cos(d*x + c)^3 - 4*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*(cos(d*x + c) - 2)*sqrt
(cos(d*x + c))*sin(d*x + c) - 7*a*cos(d*x + c)^2 + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2))/d, sqrt(-a)*arctan(
2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 - a*cos(d
*x + c) - 2*a))/d]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a \left (\sec{\left (c + d x \right )} + 1\right )}}{\sqrt{\cos{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**(1/2)/cos(d*x+c)**(1/2),x)

[Out]

Integral(sqrt(a*(sec(c + d*x) + 1))/sqrt(cos(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a \sec \left (d x + c\right ) + a}}{\sqrt{\cos \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(a*sec(d*x + c) + a)/sqrt(cos(d*x + c)), x)